Lesson 10

  • From DataFrame to Excel
  • From Excel to DataFrame
  • From DataFrame to JSON
  • From JSON to DataFrame

In [1]:
import pandas as pd
import sys

In [2]:
print 'Python version ' + sys.version
print 'Pandas version: ' + pd.__version__


Python version 2.7.5 |Anaconda 2.1.0 (64-bit)| (default, Jul  1 2013, 12:37:52) [MSC v.1500 64 bit (AMD64)]
Pandas version: 0.15.2

From DataFrame to Excel


In [3]:
# Create DataFrame
d = [1,2,3,4,5,6,7,8,9]
df = pd.DataFrame(d, columns = ['Number'])
df


Out[3]:
Number
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9

In [4]:
# Export to Excel
df.to_excel('Lesson10.xlsx', sheet_name = 'testing', index = False)
print 'Done'


Done

From Excel to DataFrame


In [5]:
# Path to excel file
# Your path will be different, please modify the path below.
location = r'C:\Users\david\notebooks\pandas\Lesson10.xlsx'

# Parse the excel file
df = pd.read_excel(location, 0)
df.head()


Out[5]:
Number
0 1
1 2
2 3
3 4
4 5

In [6]:
df.dtypes


Out[6]:
Number    int64
dtype: object

In [7]:
df.tail()


Out[7]:
Number
4 5
5 6
6 7
7 8
8 9

From DataFrame to JSON


In [8]:
df.to_json('Lesson10.json')
print 'Done'


Done

From JSON to DataFrame


In [9]:
# Your path will be different, please modify the path below.
jsonloc = r'C:\Users\david\notebooks\pandas\Lesson10.json'

# read json file
df2 = pd.read_json(jsonloc)

In [10]:
df2


Out[10]:
Number
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9

In [11]:
df2.dtypes


Out[11]:
Number    int64
dtype: object

Author: David Rojas